Southampton

Bilevel Optimisation with Applications into

Hyper-parameter Tuning in Machine Learning

Shenglong Zhou work with Alain Zemkoho
Mathematical Sciences, University of Southampton, United Kingdom

Outline

Bilevel Optimisation

Hyper-parameter Tuning
Approaches to Solve Bilevel Optimisation
LLVF Reformulation Approach
QVI Reformulation Approach
KKT Reformulation Approach
Numerical Implementation
Semi-smooth Newton method
Bilevel Optimisation Toolbox
Numerical Experiments
Hyper-parameter Tuning: Ridge Lasso and SVR

Bilevel Optimisation

Bilevel Optimisation

> Bilevel network-map shows connections between various applications and theory since 1950s. Each connecting link represents either a topic connected with a subtopic, or an overlap between two subtopics.

Bilevel Optimisation

Bilevel optimisation (BO) problems are hierarchical. In many organizations, the realized outcome of any decision taken by the upper level leader to optimise their goals is affected by the response of lower level follower, who will seek to optimise their own outcomes. Mathematically,

$$
\begin{array}{cl}
\min _{x, y} & F(x, y) \\
\text { s.t. } & x \in X, y \in \arg \min _{z \in Y} f(x, z)
\end{array}
$$

where $F, f: X \times Y \rightarrow \mathbb{R}$.

Bilevel Optimisation

Particularly, we are interested in the bilevel optimisation model ,

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}} & F(x, y) \\
\text { s.t. } & G(x, y) \leq 0, y \in \arg \min _{z}\{f(x, z): g(x, z) \leq 0\},
\end{array}
$$

where $F, f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}, G: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$, and $g: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{q}$. The equality constraints $H(x, y)=0$ can be transferred into $H(x, y) \leq$ $0,-H(x, y) \leq 0$.

Hyper-parameter Tuning

Hyper-parameter Tuning Regularized Regression

Regression problems frequently involve some parameters such as a tube parameter ϵ in the regression error or a trade-off parameter θ between the regression error and the regularisation:

$$
\min _{\beta \in \mathbb{R}^{n}} \underbrace{\sum_{i=1}^{m} \ell_{\epsilon}\left(h\left(\beta, a^{i}\right), b_{i}\right)}_{\text {regression error }}+\theta \underbrace{\underbrace{\phi(x)}_{i=1}}_{\text {regularisation }}
$$

where $\left(a^{i}, b_{i}\right) \in \mathbb{R}^{n} \times \mathbb{R}, i=1, \cdots, m$ are sample data, ℓ is the loss function to quantify the regression error and ϕ is the regularisation favouring some structures of a solution.

Hyper-parameter Tuning Applications from Machine Learning

Lasso

Ridge Lasso

Logistic Regression
Support Vector Regression $\min _{\beta \in \mathbb{R}^{n}} \sum_{i=1}^{m} \max \left\{\left|\beta^{\top} a^{i}-b_{i}\right|-\epsilon, 0\right\}+\theta\|x\|_{2}^{2}$,
Support Vector Machine

$$
\begin{aligned}
& \min _{\beta \in \mathbb{R}^{n}} \sum_{i=1}^{m}\left(\beta^{\top} a^{i}-b_{i}\right)^{2}+\theta\|\beta\|_{1}, \\
& \min _{\beta \in \mathbb{R}^{n}} \sum_{i=1}^{m}\left(\beta^{\top} a^{i}-b_{i}\right)^{2}+\theta_{1}\|\beta\|_{2}^{2} \text {, s.t. }\|\beta\|_{1} \leq \theta_{2}, \\
& \min _{\beta \in \mathbb{R}^{n}} \sum_{i=1}^{m}\left\{\ln \left(1+e^{\beta^{\top} a^{i}}\right)-b_{i} \beta^{\top} a^{i}\right\}+\theta\|\beta\|_{2}^{2}, \\
& \min _{\beta \in \mathbb{R}^{n}} \sum_{i=1}^{m} \max \left\{\left|\beta^{\top} a^{i}-b_{i}\right|-\epsilon, 0\right\}+\theta\|x\|_{2}^{2},
\end{aligned}
$$

$$
\min _{\beta \in \mathbb{R}^{n}, y \in \mathbb{R}_{i=1}} \sum_{i}^{m} \max \left\{1-b_{i}\left(\beta^{\top} a^{i}-y\right), 0\right\}+\theta\|\beta\|_{2}^{2}
$$

Hyper-parameter Tuning K-fold Cross Validation

- Partition the set $T:=\{1, \cdots, m\}$ into K parts $T_{k}, k=1, \cdots, K$ with $T_{k} \cap T_{j}=\emptyset, k \neq j$ and $T=\cup_{k=1}^{K} T_{k}$.
- Partition the data $\mathcal{D}:=\left\{\left(a^{i}, b_{i}\right)\right\}_{i=1}^{m}$ into K folders $\mathcal{D}_{k}:=\left\{\left(a^{i}, b_{i}\right)\right\}_{i \in T_{k}}$.
- For a given parameter (e.g., $\mu:=(\theta, \epsilon)$), for each k, solve the model to get $\beta^{k}(\mu)$ with training data $\mathcal{D} \backslash \mathcal{D}_{k}$, and then calculate the validation error on validation data \mathcal{D}_{k}, namely, $\sum_{i \in T_{k}} \ell_{\epsilon}\left(h\left(\beta^{k}(\mu), a^{i}\right), b_{i}\right)$. This gives us the average validation error

$$
C V(\mu):=\frac{1}{K} \sum_{k=1}^{K} \sum_{i \in T_{k}} \ell_{\epsilon}\left(h\left(\beta^{k}(\mu), a^{i}\right), b_{i}\right)
$$

- Do this for many values of μ and choose one making $C V(\mu)$ smallest.

Hyper-parameter Tuning Bilevel Optimisation perspective

Based on the K-fold Cross Validation, for Regularized Regression, we could do
$\min _{\theta, \epsilon, \beta^{1}, \cdots, \beta^{K}} \frac{1}{K} \sum_{k=1}^{K} \sum_{i \in T_{k}} \ell_{\epsilon}\left(h\left(\beta^{k}, a^{i}\right), b_{i}\right)$,
s.t. \quad for each $k=1, \cdots, K, \beta^{k} \in \underset{z^{k}}{\operatorname{argmin}} \sum_{i \notin T_{k}} \ell_{\epsilon}\left(h\left(z^{k}, a^{i}\right), b_{i}\right)+\theta \phi\left(z^{k}\right)$,

Or we could solve

$$
\begin{aligned}
\min _{\theta, \epsilon, \beta^{1}, \ldots, \beta^{K}} & \frac{1}{K} \sum_{k=1}^{K} \sum_{i \in T_{k}} \ell_{\epsilon}\left(h\left(\beta^{k}, a^{i}\right), b_{i}\right), \\
\text { s.t. } & \left(\beta^{1}, \cdots, \beta^{K}\right) \in \underset{\left(z^{1}, \ldots, z^{K}\right)}{\operatorname{argmin}} \sum_{k=1}^{K} \sum_{i \notin T_{k}}\left[\ell_{\epsilon}\left(h\left(z^{k}, a^{i}\right), b_{i}\right)+\theta \phi\left(z^{k}\right)\right],
\end{aligned}
$$

Hyper-parameter Tuning Advantage of Bilevel Optimisation

- Cross Validation becomes very expensive when the parameter is in high dimension. To choose the a parameter such the validation error $C V(\mu)$ smallest, the common way is to use the grid-searching. For example, if $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}\right)^{\top} \in \mathbb{R}^{3}$. Each μ_{i} has N values, then to choose a best μ, it needs repeat N^{3} times to solve the model.
- CV does not give the value range of the parameter, which means we need to test many values to find a proper range and then do CV. While this can be overcome by Bilevel optimisation which calculates the parameter automatically.

Approaches to Solve Bilevel Optimisation

LLVF Reformulation Approach Model Reformulation

Bilevel optimisation model

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}} & F(x, y) \\
\text { s.t. } & G(x, y) \leq 0, y \in \arg \min _{z}\{f(x, z): g(x, z) \leq 0\} .
\end{array}
$$

We reformulate the above two level problem into a single level model

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}} & F(x, y) \\
\text { s.t. } & G(x, y) \leq 0, g(x, y) \leq 0, f(x, y)=\psi(x)
\end{array}
$$

by introduce the lower-level value function (LLVF),

$$
\psi(x):=\min _{z \in \mathbb{R}^{m}}\{f(x, z): g(x, z) \leq 0\},
$$

LLVF Reformulation Approach Partial penalization

The single level model

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}} & F(x, y) \\
\text { s.t. } & G(x, y) \leq 0, g(x, y) \leq 0, f(x, y)=\psi(x) .
\end{array}
$$

To establish its necessary optimality condition, consider its the partial penalization, for $\lambda>0$,

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}} & F(x, y)+\lambda(f(x, y)-\psi(x)) \\
\text { s.t. } & G(x, y) \leq 0, g(x, y) \leq 0 .
\end{array}
$$

The equivalence is related to partial calmness. ${ }^{1}$

[^0]
LLVF Reformulation Approach Necessary optimality condition

Let (x, y) be a local optimal solution of (1). Under some assumptions, there exist $\lambda>0, u \in \mathbb{R}^{p},(v, w) \in \mathbb{R}^{2 q}$, and $z \in \mathbb{R}^{m}$ such that we have

$$
\begin{aligned}
\nabla_{x} F(x, y)+\nabla_{x} G(x, y)^{\top} u+\nabla_{x} g(x, y)^{\top} v+\lambda \nabla_{x} f(x, y)-\lambda \nabla_{x} \ell(x, z, w) & =0, \\
\nabla_{y} F(x, y)+\nabla_{y} G(x, y)^{\top} u+\nabla_{y} g(x, y)^{\top} v+\lambda \nabla_{y} f(x, y) & =0, \\
\nabla_{z} f(x, z)+\nabla_{z} g(x, z)^{\top} w & =0, \\
u \geq 0, G(x, y) \leq 0, u^{\top} G(x, y) & =0, \\
v \geq 0, g(x, y) \leq 0, v^{\top} g(x, y) & =0, \\
w \geq 0, g(x, z) \leq 0, w^{\top} g(x, z) & =0 .
\end{aligned}
$$

where $\ell(x, z, w)$ represents the lower-level Lagrangian function ${ }^{2}$

$$
\ell(x, z, w):=f(x, z)+w^{\top} g(x, z)
$$

[^1]
QVI Reformulation Approach Model Reformulation

For the lower level problem

$$
y \in \arg \min _{z \in \mathbb{R}^{m}}\{f(x, z): g(x, z) \leq 0\}
$$

if it is convex w.r.t. the second variable, then we could consider

$$
\left\langle\nabla_{y} f(x, y), z-y\right\rangle \geq 0, \forall z \text { such that } g(x, z) \leq 0,
$$

These quasi-variational inequalities (QVI) are equivalent to

$$
y^{\top} \nabla_{y} f(x, y)=\min _{z \in \mathbb{R}^{m}}\left\{z^{\top} \nabla_{y} f(x, y): g(x, z) \leq 0\right\}=: \varphi(x, y),
$$

which allows us to derive a single level reformulation as

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}} & F(x, y) \\
\text { s.t. } & G(x, y) \leq 0, g(x, y) \leq 0, y^{\top} \nabla_{y} f(x, y)=\varphi(x, y) .
\end{array}
$$

QVI Reformulation Approach Partial penalization

The single level model

$$
\begin{array}{rl}
\min _{\zeta \in \mathbb{R}^{n+m}} & F(\zeta) \\
\text { s.t. } & G(\zeta) \leq 0, g(\zeta) \leq 0, h(\zeta)=\varphi(\zeta)
\end{array}
$$

Again we consider its the partial penalization

$$
\begin{array}{rl}
\min _{\zeta \in \mathbb{R}^{n+m}} & F(\zeta)+\lambda(h(\zeta)-\varphi(\zeta)) \\
\text { s.t. } & G(\zeta) \leq 0, g(\zeta) \leq 0
\end{array}
$$

where $\zeta=(x ; y)$ and $h(\zeta)=y^{\top} \nabla_{y} f(x, y)$.

QVI Reformulation Approach Necessary optimality condition

Let ζ be a local optimal solution of (2). Under some assumptions, there exist $\lambda>0, u \in \mathbb{R}^{p},(v, w) \in \mathbb{R}^{2 q}$, and $z \in \mathbb{R}^{m}$ such that we have

$$
\begin{array}{r}
\nabla F(\zeta)+\nabla G(\zeta)^{\top} u+\nabla g(\zeta)^{\top} v+\lambda \nabla h(\zeta)-\lambda \nabla_{\zeta} \ell(\zeta, z, w)=0, \\
\nabla_{\zeta_{2}} f(\zeta)+\nabla_{z} g\left(\zeta_{1}, z\right)^{\top} w=0, \\
u \geq 0, G(\zeta) \leq 0, u^{\top} G(\zeta)=0, \\
v \geq 0, g(\zeta) \leq 0, v^{\top} g(\zeta)=0, \\
w \geq 0, g\left(\zeta_{1}, z\right) \leq 0, w^{\top} g\left(\zeta_{1}, z\right)=0 .
\end{array}
$$

where $\ell(\zeta, z, w)$ represents the lower-level Lagrangian function

$$
\ell(\zeta, z, w):=z^{\top} \nabla_{\zeta_{2}} f(\zeta)+w^{\top} g\left(\zeta_{1}, z\right)
$$

KKT Reformulation Approach Model Reformulation

For the lower level problem

$$
y \in \arg \min _{z \in \mathbb{R}^{m}}\{f(x, z): g(x, z) \leq 0\},
$$

replacing it by its Karush-Kuhn-Tucker (KKT) conditions derive a single level reformulation as

$$
\begin{array}{rl}
\min _{t \in \mathbb{R}^{q}, x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}} & F(x, y) \\
\text { s.t. } & G(x, y) \leq 0, \\
& \nabla_{y} f(x, y)-\nabla_{y} g(x, y)^{\top} t=0, \\
& g(x, y)^{\top} t=0, \quad g(x, y) \leq 0, \quad t \leq 0 .
\end{array}
$$

KKT Reformulation Approach

Partial penalization

The single level model

$$
\begin{array}{rl}
\min _{t \in \mathbb{R}^{q}, x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}} & F(x, y) \\
\text { s.t. } & G(x, y) \leq 0, \tag{3}\\
& \nabla_{y} f(x, y)-\nabla_{y} g(x, y)^{\top} t=0, \\
& g(x, y)^{\top} t=0, \quad g(x, y) \leq 0, \quad t \leq 0 .
\end{array}
$$

Standard constraint qualifications fail to hold for (3) due to the complementary equations $g(x, y)^{\top} t=0$. Consider its the partial penalization

$$
\begin{array}{rl}
\min _{t \in \mathbb{R}^{q}, x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}} & F(x, y)+\lambda g(x, y)^{\top} t \\
\text { s.t. } & G(x, y) \leq 0, g(x, y) \leq 0, t \leq 0, \\
& \nabla_{y} f(x, y)-\nabla_{y} g(x, y)^{\top} t=0 .
\end{array}
$$

KKT Reformulation Approach Necessary optimality condition

Let (x, y, t) be a local optimal solution of (3). Under some assumptions, there exist $\lambda>0, u \in \mathbb{R}^{p}, s \in \mathbb{R}^{m}$ and $(v, w) \in \mathbb{R}^{2 q}$ such that we have

$$
\begin{array}{r}
\nabla_{x} F(x, y)+\nabla_{x} G(x, y)^{\top} u+\nabla_{x} g(x, y)^{\top}(\lambda t+v)+\nabla_{x} h(x, y, t)^{\top} s=0, \\
\nabla_{y} F(x, y)+\nabla_{y} G(x, y)^{\top} u+\nabla_{y} g(x, y)^{\top}(\lambda t+v)+\nabla_{y} h(x, y, t)^{\top} s=0, \\
\lambda g(x, y)+w-\nabla_{y} g(x, y) s=0, \\
h(x, y, t)=0, \\
u \geq 0, G(x, y) \leq 0, u^{\top} G(x, y)=0, \\
v \geq 0, g(x, y) \leq 0, v^{\top} g(x, y)=0, \\
w \geq 0, t \leq 0, w^{\top} t=0 .
\end{array}
$$

where

$$
h(x, y, t):=\nabla_{y} f(x, y)-\nabla_{y} g(x, y)^{\top} t .
$$

Numerical Implementation

Semi-smooth Newton method Fischer-Burmeister function

Three optimality conditions have nonlinear complementarity conditions, which are able to be rewritten as systems only containing equations through some NCP functions, (e.g. Fischer-Burmeister function ${ }^{3}$) defined by

$$
\begin{equation*}
\psi_{F B}(a, b):=\sqrt{a^{2}+b^{2}}-a-b \tag{4}
\end{equation*}
$$

For instance,

$$
\begin{gathered}
u \geq 0, G(x, y) \leq 0, u^{\top} G(x, y)=0 \\
\Longleftrightarrow \quad \psi_{F B}(-G(x, y), u):=\left[\begin{array}{c}
\psi_{F B}\left(-G_{1}(x, y), u_{1}\right) \\
\vdots \\
\psi_{F B}\left(-G_{p}(x, y), u_{p}\right)
\end{array}\right]=0 .
\end{gathered}
$$

[^2]
Semismooth Newton Method Algorithmic framework

Semismooth Newton method ${ }^{4}$ solves non-smooth equations $\Phi^{\lambda}(\chi)=0$, with minimizing $\Psi^{\lambda}(\chi):=\frac{1}{2}\left\|\Phi^{\lambda}(\chi)\right\|^{2}$.
Step 0: Choose $\lambda, \epsilon, K>0, \rho \in(0,1), \sigma \in(0,1 / 2), \delta>2, \chi^{o}$ and set $k:=0$.
Step 1: If $\left\|\Phi^{\lambda}\left(\chi^{k}\right)\right\|<\epsilon$ or $k \leq K$, then stop.
Step 2: Choose $W^{k} \in \partial_{B} \Phi^{\lambda}\left(\chi^{k}\right)$ and find the solution d^{k} of the system

$$
W^{k} d^{k}=-\Phi^{\lambda}\left(\chi^{k}\right) .
$$

If the above system is not solvable of if the condition

$$
\nabla \Psi^{\lambda}\left(\chi^{k}\right)^{\top} d^{k} \leq-\rho\left\|d^{k}\right\|^{\delta}
$$

is not satisfied, set $d^{k}=-\nabla \Psi^{\lambda}\left(\chi^{k}\right)$.
Step 3: Find the smallest nonnegative integer s_{k} such that

$$
\Psi^{\lambda}\left(\chi^{k}+\rho^{s_{k}} d^{k}\right) \leq \Psi^{\lambda}\left(\chi^{k}\right)+2 \sigma \rho^{s_{k}} \nabla \Psi^{\lambda}\left(\chi^{k}\right)^{\top} d^{k}
$$

Then set $\alpha_{k}:=\rho^{s_{k}}, \chi^{k+1}:=\chi^{k}+\alpha_{k} d^{k}, k:=k+1$ and go to Step 1.

[^3]
Bilevel Optimisation Toolbox

BiOpt toolbox ${ }^{5}$, to help accelerate the development of numerical toolboxes for bilevel optimisation, aims at providing a platform on which users can test a wide range of bilevel optimization problems by using the provided solvers. The toolbox is made of

- Three bilevel optimisation solvers: SNLLVF, SNQVI and SNKKT based on three optimality conditions via Semismooth Newton method.
- BOLIB: Bilevel optimisation library of test problems containing 173 bilevel optimisation test examples.
- Derivatives calculator to calculate the first, second and third order derivatives of a single/set-valued function.
- Optimal-value function tools to operate an optimal-value function.

[^4]
Numerical Experiments Comparison of three solvers

Figure: Three solvers need calculate derivatives.

	F	G	f	g
SNLLVF	1st,2nd	1st,2nd	1st,2nd	1st,2nd
SNQVI	1st,2nd	1st,2nd	1st,2nd,3rd	1st,2nd
SNKKT	1st,2nd	1st,2nd	1st,2nd,3rd	1st,2nd,3rd

Numerical Experiments Comparison of three solvers

Figure: Three solvers solve 124 bilevel optimisation examples.

λ		2^{-3}	2^{-2}	2^{-1}	2^{0}	2^{1}	2^{2}	2^{3}
Number	SNLLVF	6	2	8	3	3	1	6
of	SNQVI	8	6	6	3	8	5	9
Failures	SNKKT	8	8	6	6	9	12	12
Average	SNLLVF	154.0	113.4	181.7	85.2	144.3	154.4	198.6
iterations	SNQVI	194.7	145.5	180.3	102.6	238.7	215.1	284.9
	SNKKT	166.1	173.7	157.9	170.9	212.4	233.2	308.9
Average	SNLLVF	0.17	0.10	0.16	0.07	0.15	0.14	0.21
time	SNQVI	0.55	0.39	0.44	0.35	1.98	1.94	1.62
	SNKKT	5.11	5.55	3.99	1.23	4.27	5.68	5.75

Numerical Experiments Comparison of three solvers

Figure: A simple example with $n=1, m=1, p=1, q=4$.

Numerical Experiments Comparison of three solvers

Figure: Optimal Control problem with $n=2, m=274, p=3, q=548$.

Hyper-parameter Tuning
 Ridge Lasso

For Ridge Lasso problem:

$$
\min _{\beta \in \mathbb{R}^{n}}\|A \beta-b\|^{2}+\theta_{1}\|\beta\|^{2} \text {, s.t. }\|\beta\|_{1} \leq \theta_{2} \text {. }
$$

Partition $T=\cup_{k=1}^{K} T_{k}$ with $T_{k} \cap T_{j}=\emptyset, k \neq j$ and let $A^{k}:=A_{T_{k}}, \bar{A}^{k}:=A_{T \backslash T_{k}}$. and $b^{k}:=b_{T_{k}}, \bar{b}^{k}:=b_{T \backslash T_{k}}$

$$
\begin{aligned}
\min _{\theta:=\left(\theta_{1}, \theta_{2}\right), \mathbf{y}:=\left(\beta^{1}, \cdots, \beta^{K}\right)} & \frac{1}{K} \sum_{k=1}^{K}\left\|A^{k} \beta^{k}-b^{k}\right\|^{2}+\|\theta\|^{2}, \\
\text { s.t. } & \mathbf{y} \in \underset{\left\|z^{i}\right\|_{1} \leq \theta_{2}, i=1, \cdots, K}{\operatorname{argmin}} \sum_{k=1}^{K}\left\|\bar{A}^{k} z^{k}-\bar{b}^{k}\right\|^{2}+\theta_{1}^{2}\left\|z^{k}\right\|^{2} .
\end{aligned}
$$

Hyper-parameter Tuning Ridge Lasso

Do $K=5$-fold Cross Validation with $\theta_{1} \in\left\{10^{-8}, 10^{-7.5}, \cdots, 10^{-1}\right\}, \theta_{2} \in$ $\left\{10^{-3}, 10^{-2.5}, \cdots, 10^{3}\right\} . C V(\theta)$ generated by Cross Validation and SNQVI.

$m=n$		$C V(\theta)$	θ_{1}^{2}	θ_{2}	Time(sec)
50	CV	0.0912	0.00	1.00	3.71
	SNQVI	0.0664	1.79	6.78	0.75
90	CV	0.2432	0.00	0.10	5.41
	SNQVI	0.1966	4.36	9.00	1.58
120	CV	0.4879	0.00	0.10	7.05
	SNQVI	0.3899	6.89	10.97	2.34
160	CV	0.3876	0.00	1.00	9.23
	SNQVI	0.3258	6.84	10.76	5.96

Hyper-parameter Tuning
 Support Vector Regression

For SVR problem ${ }^{6}$

$$
\min _{\beta \in \mathbb{R}^{n}} \sum_{i=1}^{m} \max \left\{\left|\beta^{\top} a^{i}-b_{i}\right|-\epsilon, 0\right\}+\theta\|\beta\|_{2}^{2} \text {, s.t. } \underline{\beta} \leq \beta \leq \bar{\beta}
$$

Let $T=\{1, \cdots, m\}=\cup_{k=1}^{K} T_{k}$. The Bilevel optimisation model

$$
\begin{aligned}
\min _{\substack{x:=(\beta, \bar{\beta}, \epsilon, \theta) \\
y:=\left(\beta^{1}, \cdots, \beta^{K}\right)}} & \frac{1}{K} \sum_{k=1}^{K} \sum_{i \in T_{k}}\left|\left(\beta^{k}\right)^{\top} a^{i}-b_{i}\right| \\
\text { s.t. } & \epsilon>0, \theta>0, \underline{x} \leq \bar{\beta} \\
& y \in \underset{\underline{\beta} \leq z^{1}, \cdots, z^{K} \leq \bar{x}}{\operatorname{argmin}} \sum_{k=1}^{K} \sum_{i \in T \backslash T_{k}} \max \left\{\left|\left(z^{k}\right)^{\top} a^{i}-b_{i}\right|-\epsilon, 0\right\}+\theta\left\|z^{k}\right\|_{2}^{2},
\end{aligned}
$$

${ }^{6}$ Bennett, K. P., Hu, J., Ji, X., Kunapuli, G. and Pang, J. S. (2006, July). Model selection via bilevel optimization. In The 2006 IEEE International Joint Conference on Neural Network Proceedings (pp. 1922-1929). IEEE.

Conclusion

- Bilevel optimisation is able to do better hyper-parameter tuning than cross validation idea.
- Three approaches are proposed to deal with bilevel optimisation. All of are then addressed by Semismooth Newton method which is limited to solve problems with large size.
- K-fold cross validation increases the problem size of the bilevel optimisation, how to design more efficient method ?

References

[1] A. Fischer, A.B. Zemkoho and S.L. Zhou, Semismooth Newton-type method for bilevel optimization: Global convergence and extensive numerical experiments, arXiv:1912.07079, 2019.
[2] S.L. Zhou, A.B. Zemkoho and S. Demphe, Value Function Approach to Qusai-Variational Inequalities with Applications to Bilevel Optimisation, Technique Report, 2019.
[3] A. Zemkoho and S.L. Zhou, Theoretical and numerical comparison of the Karush-Kuhn-Tucker and value function reformulations in bilevel optimization, arXiv:2004.10830, 2020.
[4] S.L. Zhou A.B. Zemkoho and A. Tin, BOLIB 2019 Test Examples Library Version 2, https://biopt.github.io/, 2019.

References

[5] K.P. Bennett, J. Hu, X. Ji, G. Kunapuli and J.S. Pang, Model selection via bilevel optimization, IJCNN, IEEE, 2006.
[6] G. Kunapuli, K.P. BeGnnett, J. Hu and J.S. Pang, Classification model selection via bilevel programming, Optimization Methods \& Software 23.4: 475-489, 2008.
[7] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi and M. Pontil, Bilevel programming for hyperparameter optimization and meta-learning, PMLR, 80:1568-1577, 2018.

[^0]: ${ }^{1}$ Ye, J.J. and Zhu, D.L., 1995. Optimality conditions for bilevel programming problems. Optimization, 33(1), pp.9-27.

[^1]: ${ }^{2}$ Gauvin, J. and Dubeau, F. (1982). Differential properties of the marginal function in mathematical programming, Mathematical Programming, pp. 101-119.

[^2]: ${ }^{3}$ Fischer, A. (1992). A special Newton-type optimization method. Optimization, 24(3-4), 269-284.

[^3]: ${ }^{4}$ De Luca, T., Facchinei, F. and Kanzow, C. (1996). A semismooth equation approach to the solution of nonlinear complementarity problems. Mathematical programming, 75(3), 407-439.

[^4]: ${ }^{5}$ Available at https://biopt.github.io/

